<<<<   Index

Energy losses in transformers, rectifiers and mains adaptors

In this article I describe measurements on transformers, rectifiers and mains adaptors.
The aim is, to see if energy can be saved by using the correct components.


E-I transformers versus toroidal transformers

First I measured the energy losses in two transformers, both with 50 VA power rating.
One transformer is a conventional transformer with a E-I core.
The other transformer is one with a toroidal core.


E-I core transformer  2x 24 V  50 VA

Toroidal transformer 2x 9V  50 VA

From the transformers, I measured the output voltage at several loads.
The input power of the transformer is measured with my energymeter .
From this data I calculated output power, power loss, and efficiency of the transformer

The efficiency is output power divided by input power.
The power loss is the difference between output power and input power, the power loss is converted into heat in the transformer.

The two transformers have different output voltages, because of that I use for the two transformers different values of load resistors.
The output windings of the transformers are series connected.
 

Table 1: Losses in E-I core transformer 2x 24 V   50 VA

Load
resistors
parallel
Output voltage
(Volt a.c.)
Input power
(Watt)
Output power
(Watt)
Efficiency Power loss
(Watt)
-   9.1 0.000 0.000 9.100
1x 560 Ω 51.0 18.1 4.645 0.257 13.455
2x 560 Ω 50.6 21.9 9.144 0.418 12.756
3x 560 Ω 50.2 25.3 13.500 0.534 11.800
4x 560 Ω 49.8 28.7 17.715 0.617 10.985
6x 560 Ω 49.1 35.5 25.830 0.728 9.670
8x 560 Ω 48.5 42.6 33.604 0.789 8.996
10x 560 Ω 47.7 49.3 40.630 0.824 8.670

 

Table 2: Losses in toroidal transformer 2x 9 V  50 VA

Load
resistors
parallel
Output voltage
(Volt a.c.)
Input power
(Watt)
Output power
(Watt)
Efficiency Power loss
(Watt)
-   1.16 0.000 0.000 1.160
1x 82 Ω 20.1 5.33 4.927 0.924 0.403
2x 82 Ω 20.0 9.97 9.756 0.979 0.214
3x 82 Ω 19.7 14.38 14.198 0.987 0.182
4x 82 Ω 19.4 18.70 18.359 0.982 0.341
6x 82 Ω 19.1 27.70 26.693 0.964 1.007
8x 82 Ω 18.7 35.90 34.116 0.950 1.784
10x 82 Ω 18.4 43.50 41.288 0.949 2.212

 

Graph 1:
Efficiency versus output power
and power loss versus output power.
1 =   E-I core transformer (see table 1)
2 =   Toroidal transformer (see table 2)


Losses in rectifiers.

The following measurements show the effect of several kinds of rectifiers on power loss.
 

Rectifier with 4 silicon diodes

Circuit diagram 1

The toroidal transformer 2x 9V 50 VA is connected in this way to a rectifier circuit.
The two 9 V windings are parallel connected, the rectifier consists of 4 silicon diodes (3.7A bridge rectifier).
The value of the elco is 4700 μF.


Table 3: Losses in toroidal transformer + 4 silicon diodes, corresponding to circuit diagram 1.

Load
resistors
parallel
Output voltage
(Volt d.c.)
Input power
(Watt)
Output power
(Watt)
Efficiency Power loss
(Watt)
- 13.46 1.17 0.000 0.000 1.170
1x 47 Ω 12.26 3.98 3.198 0.804 0.782
2x 47 Ω 11.84 7.22 5.965 0.826 1.255
3x 47 Ω 11.53 10.15 8.486 0.836 1.664
4x 47 Ω 11.28 13.14 10.829 0.824 2.311
6x 47 Ω 10.80 18.67 14.890 0.798 3.780
8x 47 Ω 10.40 23.41 18.410 0.786 5.000
10x 47 Ω 10.03 27.95 21.404 0.766 6.546

 

Rectifier with 2 silicon diodes

Circuit diagram 2.

The rectifier is now connected in this way, with two silicon diodes (instead of 4).
The two diodes are part of the 3.7 A bridge rectifier used in circuit diagram 1, the two other diodes stay unused.

The two windings of the transformer are series connected.
The transformer is the same 2x 9V 50 VA toroidal.
The value of the elco is 4700 μF.

Table 4: Losses in toroidal transformer + 2 silicon diodes, corresponding to circuit diagram 2.

Load
resistors
parallel
Output voltage
(Volt d.c.)
Input power
(Watt)
Output power
(Watt)
Efficiency Power loss
(Watt)
- 13.95 1.17 0.000 0.000 1.170
1x 47 Ω 12.94 4.00 3.563 0.891 0.436
2x 47 Ω 12.47 7.46 6.617 0.887 0.843
3x 47 Ω 12.10 10.60 9.345 0.882 1.255
4x 47 Ω 11.80 13.60 11.850 0.871 1.750
6x 47 Ω 11.23 19.05 16.100 0.845 2.950
8x 47 Ω 10.78 23.86 19.780 0.829 4.080
10x 47 Ω 10.30 28.06 22.572 0.804 5.488

 

Rectifier with 2 schottky diodes

Circuit diagram 3

Now the 2 silicon diodes are replaced by 2 schottky diodes, type MBR360 (3A 60V).
The transformer is the same 2x 9V 50 VA toroidal.
The value of the elco is 4700 μF.

Table 5: Losses in toroidal transformer + 2 schottky diodes, corresponding to circuit diagram 3

Load
resistors
parallel
Output voltage
(Volt d.c.)
Input power
(Watt)
Output power
(Watt)
Efficiency Power loss
(Watt)
- 14.22 1.17 0.000 0.000 1.170
1x 47 Ω 13.30 4.20 3.764 0.896 0.436
2x 47 Ω 12.79 7.69 6.961 0.905 0.729
3x 47 Ω 12.43 10.86 9.862 0.908 0.998
4x 47 Ω 12.10 14.06 12.460 0.886 1.600
6x 47 Ω 11.48 19.51 16.824 0.862 2.686
8x 47 Ω 11.00 24.32 20.596 0.847 3.724
10x 47 Ω 10.57 28.80 23.771 0.825 5.029

 

Graph 2:

The values for efficiency and power loss from table 3, 4 and 5 are shown in these graphs.

The use of 2 schottky diodes gives the best efficiency, and the lowest power loss.


Losses in several kinds of power supplies and mains adaptors

 

Toroidal  2x 6V 15 VA

 

I have build this power supply with the following components:
1 toroidal transformer 2x 6V 15 VA
2 schottky diodes MBR360 and an elco of 4700 μF.

The output voltage is not stabilized.

Table 6: Toroidal transformer 2x 6V 15 VA

Load
resistors
parallel
Output voltage
(Volt d.c.)
Input power
(Watt)
Output power
(Watt)
Efficiency Power loss
(Watt)
- 9.48 < 0.50* 0.000 0.000 < 0.500
1x 82 Ω 8.95 1.18 0.977 0.828 0.203
2x 82 Ω 8.65 2.11 1.825 0.865 0.285
3x 82 Ω 8.41 3.05 2.588 0.848 0.462
4x 82 Ω 8.20 3.98 3.280 0.824 0.700
5x 82 Ω 8.01 4.63 3.912 0.845 0.718
6x 82 Ω 7.84 5.56 4.497 0.809 1.063
8x 82 Ω 7.50 6.94 5.488 0.791 1.452
10x 82 Ω 7.23 8.07 6.375 0.790 1.695

* My energy meter cannot measure power below 0.5 W.


Switch mode mains adaptor.

Switch mode mains adaptor
Brand: HQ
Model: P.SUP.SMP1-BL

This adaptor is adjustable between 3 and 12 Vdc.
The output voltage is stabilized, so constant.
But I did notice this adapter can cause interference if connected to e.g. radio's or telephones.

This adaptor is tested at 9 volt output voltage.

Table 7: switch mode mains adaptor

Load
resistors
parallel
Output voltage
(Volt d.c.)
Input power
(Watt)
Output power
(Watt)
Efficiency Power loss
(Watt)
- 9.06 < 0.50 0.000 0.000 < 0.500
1x 82 Ω 9.05 1.87 0.999 0.534 0.871
2x 82 Ω 9.04 3.01 1.993 0.662 1.017
3x 82 Ω 9.02 4.40 2.977 0.677 1.423
4x 82 Ω 9.00 5.56 3.951 0.711 1.609
5x 82 Ω 8.98 6.72 4.917 0.732 1.803
6x 82 Ω 8.97 8.14 5.887 0.723 2.253
7x 82 Ω 8.95 9.30 6.838 0.735 2.462

 

Non stabilized mains adaptor

Non stabilized mains adaptor.
Brand: MW
Model: MW79GS

The output voltage is adjustable between 3 and 12 V, and tested at 9V.
The maximum output current is 800 mA.

The adaptor has internal a small E-I core transformer.


Table 8: non stabilized mains adaptor 800 mA

Load
resistors
parallel
Output voltage
(Volt d.c.)
Input power
(Watt)
Output power
(Watt)
Efficiency Power loss
(Watt)
- 12,42 2,22 0,000 0,000 2,220
1x 82 Ω 11,56 6,68 1,630 0,244 5,050
2x 82 Ω 10,99 7,58 2,946 0,389 4,634
3x 82 Ω 10,50 8,25 4,034 0,489 4,216
4x 82 Ω 10,08 8,97 4,956 0,553 4,014
5x 82 Ω 9,74 9,63 5,785 0,601 3,845
6x 82 Ω 9,40 10,21 6,465 0,633 3,745

 

Stabilized mains adaptor

Stabilized mains adaptor.
Brand: Skytronic
Model: MW300GS

The output voltage is adjustable between 1.5 and 12 V, and tested at 9V.
The maximum output current is 300 mA.


Table 9: stabilized mains adaptor

Load
resistors
parallel
Output voltage
(Volt d.c.)
Input power
(Watt)
Output power
(Watt)
Efficiency Power loss
(Watt)
- 9.40 1.60 0.000 0.000 1.600
1x 82 Ω 9.35 6.44 1.066 0.166 5.374
2x 82 Ω 9.32 6.82 2.119 0.311 4.701
3x 82 Ω 9.29 7.93 3.157 0.398 4.773

 

Graph 3:
Efficiency en power loss for:
6 = Power supply with toroidal transformer (see table 6)
7 = Switch mode mains adaptor (see table 7)
8 = Non stabilized mains adaptor (see table 8)
9 = Stabilized mains adaptor (see table 9)


Conclusion:

By using toroidal transformers, energy can be saved in power supplies.
Especially at low output current, the toroidal transformer is much better then the E-I core transformer.
Also by using schottky diodes and rectifiers with 2 diodes (instead of 4), energy can be saved.

Every reduction of losses, can save at long term quite some energy.
Every Watt saving, gives per year a saving of 8.76 kWh.
 

<<<<   Index