LM134/LM234/LM334 3-Terminal Adjustable Current Sources

Check for Samples: LM134, LM234, LM334

FEATURES
- Operates From 1V to 40V
- 0.02%/V Current Regulation
- Programmable From 1μA to 10mA
- True 2-Terminal Operation
- Available as Fully Specified Temperature Sensor
- ±3% Initial Accuracy

DESCRIPTION
The LM134/LM234/LM334 are 3-terminal adjustable current sources featuring 10,000:1 range in operating current, excellent current regulation and a wide dynamic voltage range of 1V to 40V. Current is established with one external resistor and no other parts are required. Initial current accuracy is ±3%. The LM134/LM234/LM334 are true floating current sources with no separate power supply connections. In addition, reverse applied voltages of up to 20V will draw only a few dozen microamperes of current, allowing the devices to act as both a rectifier and current source in AC applications.

The sense voltage used to establish operating current in the LM134 is 64mV at 25°C and is directly proportional to absolute temperature (°K). The simplest one external resistor connection, then, generates a current with ≈0.33%/°C temperature dependence. Zero drift operation can be obtained by adding one extra resistor and a diode.

Applications for the current sources include bias networks, surge protection, low power reference, ramp generation, LED driver, and temperature sensing. The LM234-3 and LM234-6 are specified as true temperature sensors with ensured initial accuracy of ±3°C and ±6°C, respectively. These devices are ideal in remote sense applications because series resistance in long wire runs does not affect accuracy. In addition, only 2 wires are required.

The LM134 is specified over a temperature range of −55°C to +125°C, the LM234 from −25°C to +100°C and the LM334 from 0°C to +70°C. These devices are available in TO hermetic, TO-92 and SOIC-8 plastic packages.

Connection Diagrams

SOIC-8 Surface Mount Package

<table>
<thead>
<tr>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>NC</td>
<td>V−</td>
<td>V+</td>
<td>NC</td>
</tr>
</tbody>
</table>

Figure 1. See Package Number D

V− Pin is electrically connected to case.

SOIC-8 Alternative Pinout Surface Mount Package

<table>
<thead>
<tr>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>NC</td>
<td>V−</td>
<td>V+</td>
<td>NC</td>
</tr>
</tbody>
</table>

Figure 2. See Package Number D

TO Metal Can Package (Bottom View)

R

V+ V−

Figure 3. See Package Number NDV

TO-92 Plastic Package (Bottom View)

R

V+ V−

Figure 4. See Package Number LP

⚠️ Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

All trademarks are the property of their respective owners.
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

Absolute Maximum Ratings

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>V+ to V- Forward Voltage</td>
<td>40V</td>
<td>30V</td>
<td></td>
</tr>
<tr>
<td>V+ to V- Reverse Voltage</td>
<td></td>
<td>20V</td>
<td></td>
</tr>
<tr>
<td>Pins to V- Voltage</td>
<td>5V</td>
<td>5V</td>
<td></td>
</tr>
<tr>
<td>Set Current</td>
<td>10 mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power Dissipation</td>
<td>400 mW</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ESD Susceptibility (3)</td>
<td>2000V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating Temperature Range (4)</td>
<td>LM134 −55°C to +125°C</td>
<td>LM234/LM234-3/LM234-6 −25°C to +100°C</td>
<td>LM334 0°C to +70°C</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Soldering Information</th>
<th>TO-92 Package (10 sec.)</th>
<th>260°C</th>
<th>TO Package (10 sec.)</th>
<th>300°C</th>
<th>SOIC Package</th>
<th>Vapor Phase (60 sec.)</th>
<th>215°C</th>
<th>Infrared (15 sec.)</th>
<th>220°C</th>
</tr>
</thead>
</table>

(1) "Absolute Maximum Ratings" indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not ensure specific performance limits.
(2) If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/Distributors for availability and specifications.
(3) Human body model, 100pF discharged through a 1.5kΩ resistor.
(4) For elevated temperature operation, Tj max is:

- LM134 150°C
- LM234 125°C
- LM334 100°C

See Thermal Characteristics.

Thermal Characteristics

over operating free-air temperature range (unless otherwise noted)

<table>
<thead>
<tr>
<th>Thermal Resistance</th>
<th>TO-92</th>
<th>TO</th>
<th>SOIC-8</th>
</tr>
</thead>
<tbody>
<tr>
<td>θja (Junction to Ambient)</td>
<td>180°C/W (0.4" leads)</td>
<td>440°C/W</td>
<td>165°C/W</td>
</tr>
<tr>
<td></td>
<td>160°C/W (0.125" leads)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>θjc (Junction to Case)</td>
<td>N/A</td>
<td>32°C/W</td>
<td>80°C/W</td>
</tr>
</tbody>
</table>
Electrical Characteristics \(^{(1)}\)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Conditions</th>
<th>(\text{LM134/LM234})</th>
<th>(\text{LM334})</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set Current Error, (V^+=2.5V) (^{(2)})</td>
<td>(10\mu A \leq I_{\text{SET}} \leq 1mA)</td>
<td>Min</td>
<td>Typ</td>
<td>Max</td>
</tr>
<tr>
<td></td>
<td>(1mA < I_{\text{SET}} \leq 5mA)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(2\mu A \leq I_{\text{SET}} < 10\mu A)</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ratio of Set Current to Bias Current</td>
<td>(100\mu A \leq I_{\text{SET}} \leq 1mA)</td>
<td>14</td>
<td>18</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>(1mA \leq I_{\text{SET}} \leq 5mA)</td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(2\mu A < I_{\text{SET}} \leq 100\mu A)</td>
<td>18</td>
<td>23</td>
<td>18</td>
</tr>
<tr>
<td>Minimum Operating Voltage</td>
<td>(2\mu A \leq I_{\text{SET}} \leq 100\mu A)</td>
<td>0.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(100\mu A < I_{\text{SET}} \leq 1mA)</td>
<td>0.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1mA < I_{\text{SET}} \leq 5mA)</td>
<td>1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average Change in Set Current with Input Voltage</td>
<td>(2\mu A \leq I_{\text{SET}} \leq 1mA)</td>
<td>0.02</td>
<td>0.05</td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td>(1.5 \leq V^+ \leq 5V)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(5\leq V^+ \leq 40V)</td>
<td>0.01</td>
<td>0.03</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td>(1mA < I_{\text{SET}} \leq 5mA)</td>
<td>0.03</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1.5V \leq V^+ \leq 5V)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(5\leq V^+ \leq 40V)</td>
<td>0.02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature Dependence of Set Current (^{(3)})</td>
<td>(25\mu A \leq I_{\text{SET}} \leq 1mA)</td>
<td>0.96T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Effective Shunt Capacitance</td>
<td></td>
<td>15</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^{(1)}\) Unless otherwise specified, tests are performed at \(T_J = 25°C\) with pulse testing so that junction temperature does not change during test.

\(^{(2)}\) Set current is the current flowing into the \(V^+\) pin. For the Basic 2-Terminal Current Source circuit shown in Figure 13, \(I_{\text{SET}}\) is determined by the following formula: \(I_{\text{SET}} = 67.7 \text{ mV/R}_{\text{SET}} (@ 25°C)\). Set current error is expressed as a percent deviation from this amount. \(I_{\text{SET}}\) increases at 0.336%/°C @ \(T_J = 25°C\) (227 \(\mu V/°C\)).

\(^{(3)}\) \(I_{\text{SET}}\) is directly proportional to absolute temperature (°K). \(I_{\text{SET}}\) at any temperature can be calculated from: \(I_{\text{SET}} = I_o (T/T_o)\) where \(I_o\) is \(I_{\text{SET}}\) measured at \(T_o\) (°K).

Electrical Characteristics \(^{(1)}\)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Conditions</th>
<th>(\text{LM234-3})</th>
<th>(\text{LM234-6})</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set Current Error, (V^+=2.5V) (^{(2)})</td>
<td>(100\mu A \leq I_{\text{SET}} \leq 1mA)</td>
<td>±1</td>
<td>±2</td>
<td>%</td>
</tr>
<tr>
<td></td>
<td>(T_J = 25°C)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equivalent Temperature Error</td>
<td>(\leq 3)</td>
<td>±6</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>Ratio of Set Current to Bias Current</td>
<td>(100\mu A \leq I_{\text{SET}} \leq 1mA)</td>
<td>14</td>
<td>18</td>
<td>26</td>
</tr>
<tr>
<td>Minimum Operating Voltage</td>
<td>(100\mu A \leq I_{\text{SET}} \leq 1mA)</td>
<td>0.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average Change in Set Current with Input Voltage</td>
<td>(100\mu A \leq I_{\text{SET}} \leq 1mA)</td>
<td>0.02</td>
<td>0.05</td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td>(1.5 \leq V^+ \leq 5V)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(5\leq V^+ \leq 30V)</td>
<td>0.01</td>
<td>0.03</td>
<td>0.01</td>
</tr>
<tr>
<td>Temperature Dependence of Set Current (^{(3)})</td>
<td>(100\mu A \leq I_{\text{SET}} \leq 1mA)</td>
<td>0.98T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equivalent Slope Error</td>
<td>(\leq 2)</td>
<td>±3</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>Effective Shunt Capacitance</td>
<td></td>
<td>15</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^{(1)}\) Unless otherwise specified, tests are performed at \(T_J = 25°C\) with pulse testing so that junction temperature does not change during test.

\(^{(2)}\) Set current is the current flowing into the \(V^+\) pin. For the Basic 2-Terminal Current Source circuit shown in Figure 13, \(I_{\text{SET}}\) is determined by the following formula: \(I_{\text{SET}} = 67.7 \text{ mV/R}_{\text{SET}} (@ 25°C)\). Set current error is expressed as a percent deviation from this amount. \(I_{\text{SET}}\) increases at 0.336%/°C @ \(T_J = 25°C\) (227 \(\mu V/°C\)).

\(^{(3)}\) \(I_{\text{SET}}\) is directly proportional to absolute temperature (°K). \(I_{\text{SET}}\) at any temperature can be calculated from: \(I_{\text{SET}} = I_o (T/T_o)\) where \(I_o\) is \(I_{\text{SET}}\) measured at \(T_o\) (°K).
Typical Performance Characteristics

Output Impedance

- $I = 10 \mu A$
- $I = 100 \mu A$
- $I = 1 mA$

Frequency (Hz)

Figure 5.

Maximum Slew Rate

- Linear Operation

Slew Rate (V/μs)

Figure 6.

Start-Up

- $10 \mu A$
- $100 \mu A$
- $1 mA$

Input Voltage (V)

Time (Note scale changes at each current level)

Figure 7.

Transient Response

- $I_{SET} = 1 mA$
- $I_{SET} = 100 \mu A$
- $I_{SET} = 10 \mu A$

Voltage (V)

Time (Note scale changes for each current)

Figure 8.

Voltage Across R_{SET} (V_R)

- V_R (mV)

Temperature (°C)

Figure 9.

Current Noise

- $I_{SET} = 5 mA$
- $I_{SET} = 1 mA$
- $I_{SET} = 100 \mu A$
- $I_{SET} = 10 \mu A$

Current (mA/μV)

Frequency (Hz)

Figure 10.
APPLICATION HINTS

The LM134 has been designed for ease of application, but a general discussion of design features is presented here to familiarize the designer with device characteristics which may not be immediately obvious. These include the effects of slewing, power dissipation, capacitance, noise, and contact resistance.

Calculating R_{SET}

The total current through the LM134 (I_{SET}) is the sum of the current going through the SET resistor (I_R) and the LM134's bias current (I_{BIAS}), as shown in Figure 13.

A graph showing the ratio of these two currents is supplied under Ratio of I_{SET} to I_{BIAS} in Typical Performance Characteristics. The current flowing through R_{SET} is determined by V_R, which is approximately 214μV/°K (64 mV/298°K ~ 214μV/°K).

$$I_{SET} = I_R + I_{BIAS} = \frac{V_R}{R_{SET}} + I_{BIAS}$$ (1)

Since (for a given set current) I_{BIAS} is simply a percentage of I_{SET}, the equation can be rewritten

$$I_{SET} = \left(\frac{V_R}{R_{SET}}\right) \left(\frac{n}{n-1}\right)$$ (2)

where n is the ratio of I_{SET} to I_{BIAS} as specified in Electrical Characteristics and shown in the graph. Since n is typically 18 for 2μA ≤ I_{SET} ≤ 1mA, the equation can be further simplified to
\[I_{\text{SET}} = \left(\frac{V_R}{R_{\text{SET}}} \right) (1.059) = \frac{227 \mu V/K}{R_{\text{SET}}} \] (3)

for most set currents.

Slew Rate

At slew rates above a given threshold (see curve), the LM134 may exhibit non-linear current shifts. The slewing rate at which this occurs is directly proportional to \(I_{\text{SET}} \). At \(I_{\text{SET}} = 10 \mu A \), maximum \(dV/dt \) is 0.01V/\(\mu s \); at \(I_{\text{SET}} = 1mA \), the limit is 1V/\(\mu s \). Slew rates above the limit do not harm the LM134, or cause large currents to flow.

Thermal Effects

Internal heating can have a significant effect on current regulation for \(I_{\text{SET}} \) greater than 100\(\mu A \). For example, each 1V increase across the LM134 at \(I_{\text{SET}} = 1mA \) will increase junction temperature by \(\approx 0.4^\circ C \) in still air. Output current (\(I_{\text{SET}} \)) has a temperature coefficient of \(\approx 0.33\%/^\circ C \), so the change in current due to temperature rise will be \((0.4) (0.33) = 0.132\% \). This is a 10:1 degradation in regulation compared to true electrical effects. Thermal effects, therefore, must be taken into account when DC regulation is critical and \(I_{\text{SET}} \) exceeds 100\(\mu A \). Heat sinking of the TO package or the TO-92 leads can reduce this effect by more than 3:1.

Shunt Capacitance

In certain applications, the 15 pF shunt capacitance of the LM134 may have to be reduced, either because of loading problems or because it limits the AC output impedance of the current source. This can be easily accomplished by buffering the LM134 with an FET as shown in the applications. This can reduce capacitance to less than 3 pF and improve regulation by at least an order of magnitude. DC characteristics (with the exception of minimum input voltage), are not affected.

Noise

Current noise generated by the LM134 is approximately 4 times the shot noise of a transistor. If the LM134 is used as an active load for a transistor amplifier, input referred noise will be increased by about 12dB. In many cases, this is acceptable and a single stage amplifier can be built with a voltage gain exceeding 2000.

Lead Resistance

The sense voltage which determines operating current of the LM134 is less than 100mV. At this level, thermocouple or lead resistance effects should be minimized by locating the current setting resistor physically close to the device. Sockets should be avoided if possible. It takes only 0.7\(\Omega \) contact resistance to reduce output current by 1% at the 1 mA level.

Sensing Temperature

The LM134 makes an ideal remote temperature sensor because its current mode operation does not lose accuracy over long wire runs. Output current is directly proportional to absolute temperature in degrees Kelvin, according to the following formula:

\[I_{\text{SET}} = \frac{227 \mu V/K(T)}{R_{\text{SET}}} \] (4)

Calibration of the LM134 is greatly simplified because of the fact that most of the initial inaccuracy is due to a gain term (slope error) and not an offset. This means that a calibration consisting of a gain adjustment only will trim both slope and zero at the same time. In addition, gain adjustment is a one point trim because the output of the LM134 extrapolates to zero at 0\^\circ K, independent of \(R_{\text{SET}} \) or any initial inaccuracy.
This property of the LM134 is illustrated in the accompanying graph. Line abc is the sensor current before trimming. Line a'b'c' is the desired output. A gain trim done at T2 will move the output from b to b' and will simultaneously correct the slope so that the output at T1 and T3 will be correct. This gain trim can be done on R_{SET} or on the load resistor used to terminate the LM134. Slope error after trim will normally be less than ±1%. To maintain this accuracy, however, a low temperature coefficient resistor must be used for R_{SET}.

A 33 ppm/°C drift of R_{SET} will give a 1% slope error because the resistor will normally see about the same temperature variations as the LM134. Separating R_{SET} from the LM134 requires 3 wires and has lead resistance problems, so is not normally recommended. Metal film resistors with less than 20 ppm/°C drift are readily available. Wire wound resistors may also be used where best stability is required.

Application as a Zero Temperature Coefficient Current Source

Adding a diode and a resistor to the standard LM134 configuration can cancel the temperature-dependent characteristic of the LM134. The circuit shown in Figure 15 balances the positive tempco of the LM134 (about +0.23 mV/°C) with the negative tempco of a forward-biased silicon diode (about −2.5 mV/°C).

![Figure 15. Zero Tempco Current Source](image)

The set current (I_{SET}) is the sum of I_1 and I_2, each contributing approximately 50% of the set current, and I_{BIAS}. I_{BIAS} is usually included in the I_1 term by increasing the V_R value used for calculations by 5.9%. (See **CALCULATING R_{SET}**.)
The first step is to minimize the tempco of the circuit, using the following equations. An example is given using a value of \(+227\mu \text{V/}^\circ \text{C}\) as the tempco of the LM134 (which includes the \(I_{\text{BIAS}}\) component), and \(-2.5 \text{ mV/}^\circ \text{C}\) as the tempco of the diode (for best results, this value should be directly measured or obtained from the manufacturer of the diode).

\[
I_{\text{SET}} = I_1 + I_2 + I_{\text{BIAS}}, \quad \text{where} \quad I_1 = \frac{V_R}{R_1} \quad \text{and} \quad I_2 = \frac{V_R + V_D}{R_2}
\]

(5)

\[
\frac{dI_{\text{SET}}}{dT} = \frac{dI_1}{dT} + \frac{dI_2}{dT} = \frac{227 \mu \text{V/}^\circ \text{C}}{R_1} + \frac{227 \mu \text{V/}^\circ \text{C} - 2.5 \text{ mV/}^\circ \text{C}}{R_2}
\]

(6)

\[
R_2 \approx \frac{2.5 \text{ mV/}^\circ \text{C} - 227 \mu \text{V/}^\circ \text{C}}{227 \mu \text{V/}^\circ \text{C}} \approx 10.0
\]

(7)

With the \(R_1\) to \(R_2\) ratio determined, values for \(R_1\) and \(R_2\) should be determined to give the desired set current. The formula for calculating the set current at \(T = 25^\circ \text{C}\) is shown below, followed by an example that assumes the forward voltage drop across the diode (\(V_D\)) is 0.6V, the voltage across \(R_1\) is 67.7mV (64 mV + 5.9% to account for \(I_{\text{BIAS}}\)), and \(R_2/R_1 = 10\) (from the previous calculations).

\[
I_{\text{SET}} = I_1 + I_2 + I_{\text{BIAS}} = \frac{V_R}{R_1} + \frac{V_R + V_D}{R_2} \approx \frac{67.7 \text{ mV}}{R_1} + \frac{67.7 \text{ mV} + 0.6 \text{V}}{10.0 R_1}
\]

\[
I_{\text{SET}} \approx \frac{0.134 \text{V}}{R_1}
\]

(8)

EXAMPLE: A 1mA, Zero-Tempco Current Source

First, solve for \(R_1\) and \(R_2\):

\[
I_{\text{SET}} \approx 1 \text{mA} = \frac{0.134 \text{V}}{R_1}
\]

\[
R_2 = 134 \text{Ω} = 10 R_1
\]

(9)

\[
R_2 = 1340 \text{Ω}
\]

The values of \(R_1\) and \(R_2\) can be changed to standard 1% resistor values (\(R_1 = 133Ω\) and \(R_2 = 1.33kΩ\)) with less than a 0.75% error.

If the forward voltage drop of the diode was 0.65V instead of the estimate of 0.6V (an error of 8%), the actual set current will be

\[
I_{\text{SET}} = \frac{67.7 \text{ mV}}{133} + \frac{67.7 \text{ mV} + 0.65 \text{V}}{1330}
\]

\[
= \frac{67.7 \text{ mV}}{133} + \frac{67.7 \text{ mV} + 0.65 \text{V}}{1330}
\]

\[
= 1.049 \text{mA}
\]

(10)

an error of less than 5%.
If the estimate for the tempco of the diode’s forward voltage drop was off, the tempco cancellation is still reasonably effective. Assume the tempco of the diode is 2.6mV/°C instead of 2.5mV/°C (an error of 4%). The tempco of the circuit is now:

\[
\frac{dI_{SET}}{dT} = \frac{dI_1}{dT} + \frac{dI_2}{dT} = \frac{227 \, \mu V/°C}{133\Omega} + \frac{227 \, \mu V/°C - 2.6 \, mV/°C}{1330\Omega} = -77 \, nA/°C
\]

(11)

A 1mA LM134 current source with no temperature compensation would have a set resistor of 68Ω and a resulting tempco of

\[
\frac{227 \, \mu V/°C}{68\Omega} = 3.3 \, \mu A/°C
\]

(12)

So even if the diode’s tempco varies as much as ±4% from its estimated value, the circuit still eliminates 98% of the LM134’s inherent tempco.

Typical Applications

*Select R3 = V_REF/583μA. V_REF may be any stable positive voltage ≥ 2V
Trim R3 to calibrate*

Figure 16. Ground Referred Fahrenheit Thermometer

Figure 17. Terminating Remote Sensor for Voltage Output
*Output impedance of the LM134 at the “R” pin is approximately \(-\frac{R_2}{16} \)

where \(R_2 \) is the equivalent external resistance connected from the V− pin to ground. This negative resistance can be reduced by a factor of 5 or more by inserting an equivalent resistor \(R_3 = \frac{R_2}{16} \) in series with the output.

Figure 18. Low Output Impedance Thermometer

*Select R1 and C1 for optimum stability

Figure 19. Low Output Impedance Thermometer

*Select R1 and C1 for optimum stability

Figure 20. Higher Output Current
Figure 21. Basic 2-Terminal Current Source

Figure 22. Micropower Bias

Figure 23. Low Input Voltage Reference Driver
Figure 24. Ramp Generator

*Select ratio of R1 to R2 to obtain zero temperature drift

Figure 25. 1.2V Reference Operates on 10 μA and 2V

*Select ratio of R1 to R2 for zero temperature drift

Figure 26. 1.2V Regulator with 1.8V Minimum Input

*Select ratio of R1 to R2 for zero temperature drift
Figure 27. Zener Biasing

*For ±10% adjustment, select R_{SET} 10% high, and make $R_1 \approx 3 R_{\text{SET}}$

Figure 28. Alternate Trimming Technique

Figure 29. Buffer for Photoconductive Cell
*Select Q1 or Q2 to ensure at least 1V across the LM134. \(V_p \left(1 - \frac{I_{SET}}{I_{DSS}}\right) \geq 1.2V. \)

Figure 30. FET Cascoding for Low Capacitance and/or Ultra High Output Impedance

\[Z_{OUT} = -16 \times R1 \]
(R1/VIN must not exceed ISET)

Figure 31. Generating Negative Output Impedance
*Use minimum value required to ensure stability of protected device. This minimizes inrush current to a direct short.

Figure 32. In-Line Current Limiter

Schematic Diagram
PACKAGING INFORMATION

<table>
<thead>
<tr>
<th>Orderable Device</th>
<th>Status (1)</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>Package Qty</th>
<th>Eco Plan</th>
<th>Lead/Ball Finish</th>
<th>MSL Peak Temp (3)</th>
<th>Op Temp (°C)</th>
<th>Top-Side Markings</th>
<th>Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>LM134H</td>
<td>ACTIVE</td>
<td>TO</td>
<td>NDV</td>
<td>3</td>
<td>1000</td>
<td>TBD</td>
<td>Call TI</td>
<td>Call TI</td>
<td>-55 to 125</td>
<td>LM134H</td>
<td>Samples</td>
</tr>
<tr>
<td>LM134H/NOPB</td>
<td>ACTIVE</td>
<td>TO</td>
<td>NDV</td>
<td>3</td>
<td>1000</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>POST-PLATE</td>
<td>Level-1-NA-UNLIM</td>
<td>-55 to 125</td>
<td>LM134H</td>
<td>Samples</td>
</tr>
<tr>
<td>LM234Z-3/NOPB</td>
<td>ACTIVE</td>
<td>TO-92</td>
<td>LP</td>
<td>3</td>
<td>1800</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>SNCU</td>
<td>Level-1-NA-UNLIM</td>
<td>-25 to 100</td>
<td>LM234 Z-3</td>
<td>Samples</td>
</tr>
<tr>
<td>LM234Z-6/NOPB</td>
<td>ACTIVE</td>
<td>TO-92</td>
<td>LP</td>
<td>3</td>
<td>1800</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>SNCU</td>
<td>Level-1-NA-UNLIM</td>
<td>-25 to 100</td>
<td>LM234 Z-6</td>
<td>Samples</td>
</tr>
<tr>
<td>LM334M</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>95</td>
<td>TBD</td>
<td>Call TI</td>
<td>Call TI</td>
<td>0 to 70</td>
<td>LM334 M</td>
<td>Samples</td>
</tr>
<tr>
<td>LM334M/NOPB</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>95</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU SN</td>
<td>Level-1-260C-UNLIM</td>
<td>0 to 70</td>
<td>LM334 M</td>
<td>Samples</td>
</tr>
<tr>
<td>LM334MX</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>2500</td>
<td>TBD</td>
<td>Call TI</td>
<td>Call TI</td>
<td>0 to 70</td>
<td>LM334 M</td>
<td>Samples</td>
</tr>
<tr>
<td>LM334MX/NOPB</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>2500</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU SN</td>
<td>Level-1-260C-UNLIM</td>
<td>0 to 70</td>
<td>LM334 M</td>
<td>Samples</td>
</tr>
<tr>
<td>LM334SM</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>95</td>
<td>TBD</td>
<td>Call TI</td>
<td>Call TI</td>
<td>0 to 70</td>
<td>LM334 SM</td>
<td>Samples</td>
</tr>
<tr>
<td>LM334SM/NOPB</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>95</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU SN</td>
<td>Level-1-260C-UNLIM</td>
<td>0 to 70</td>
<td>LM334 SM</td>
<td>Samples</td>
</tr>
<tr>
<td>LM334SMX</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>2500</td>
<td>TBD</td>
<td>Call TI</td>
<td>Call TI</td>
<td>0 to 70</td>
<td>LM334 SM</td>
<td>Samples</td>
</tr>
<tr>
<td>LM334SMX/NOPB</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>2500</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU SN</td>
<td>Level-1-260C-UNLIM</td>
<td>0 to 70</td>
<td>LM334 SM</td>
<td>Samples</td>
</tr>
<tr>
<td>LM334Z/LFT1</td>
<td>ACTIVE</td>
<td>TO-92</td>
<td>LP</td>
<td>3</td>
<td>2000</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>SNCU</td>
<td>Level-1-NA-UNLIM</td>
<td>LM334 Z</td>
<td>Samples</td>
<td></td>
</tr>
<tr>
<td>LM334Z/NOPB</td>
<td>ACTIVE</td>
<td>TO-92</td>
<td>LP</td>
<td>3</td>
<td>1800</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>SNCU</td>
<td>Level-1-NA-UNLIM</td>
<td>LM334 Z</td>
<td>Samples</td>
<td></td>
</tr>
</tbody>
</table>

(1) The marketing status values are defined as follows:
- **ACTIVE**: Product device recommended for new designs.
- **LIFEBUY**: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
- **NRND**: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
- **PREVIEW**: Device has been announced but is not in production. Samples may or may not be available.
- **OBSOLETE**: TI has discontinued the production of the device.
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material).

MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Only one of markings shown within the brackets will appear on the physical device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
TAPE AND REEL INFORMATION

TAPE DIMENSIONS

- **A0**: Dimension designed to accommodate the component width
- **B0**: Dimension designed to accommodate the component length
- **K0**: Dimension designed to accommodate the component thickness
- **W**: Overall width of the carrier tape
- **P1**: Pitch between successive cavity centers

REEL DIMENSIONS

- **Reel Diameter**: Diameter of the reel
- **Reel Width (W1)**: Width of the reel

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

- **Q1**: Pocket Quadrant
- **Q2**: Pocket Quadrant
- **Q3**: Pocket Quadrant
- **Q4**: Pocket Quadrant

All dimensions are nominal

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Reel Diameter (mm)</th>
<th>Reel Width W1 (mm)</th>
<th>A0 (mm)</th>
<th>B0 (mm)</th>
<th>K0 (mm)</th>
<th>P1 (mm)</th>
<th>W (mm)</th>
<th>Pin1 Quadrant</th>
</tr>
</thead>
<tbody>
<tr>
<td>LM334MX</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>2500</td>
<td>330.0</td>
<td>12.4</td>
<td>6.5</td>
<td>5.4</td>
<td>2.0</td>
<td>8.0</td>
<td>12.0</td>
<td>Q1</td>
</tr>
<tr>
<td>LM334MX/NOPB</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>2500</td>
<td>330.0</td>
<td>12.4</td>
<td>6.5</td>
<td>5.4</td>
<td>2.0</td>
<td>8.0</td>
<td>12.0</td>
<td>Q1</td>
</tr>
<tr>
<td>LM334SMX</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>2500</td>
<td>330.0</td>
<td>12.4</td>
<td>6.5</td>
<td>5.4</td>
<td>2.0</td>
<td>8.0</td>
<td>12.0</td>
<td>Q1</td>
</tr>
<tr>
<td>LM334SMX/NOPB</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>2500</td>
<td>330.0</td>
<td>12.4</td>
<td>6.5</td>
<td>5.4</td>
<td>2.0</td>
<td>8.0</td>
<td>12.0</td>
<td>Q1</td>
</tr>
</tbody>
</table>
TAPE AND REEL BOX DIMENSIONS

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Length (mm)</th>
<th>Width (mm)</th>
<th>Height (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LM334MX</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>2500</td>
<td>349.0</td>
<td>337.0</td>
<td>45.0</td>
</tr>
<tr>
<td>LM334MX/NOPB</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>2500</td>
<td>349.0</td>
<td>337.0</td>
<td>45.0</td>
</tr>
<tr>
<td>LM334SMX</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>2500</td>
<td>349.0</td>
<td>337.0</td>
<td>45.0</td>
</tr>
<tr>
<td>LM334SMX/NOPB</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>2500</td>
<td>349.0</td>
<td>337.0</td>
<td>45.0</td>
</tr>
</tbody>
</table>

All dimensions are nominal
MECHANICAL DATA

NDV0003H

CONTROLLING DIMENSION IS IN INCHES. VALUES IN ITALICS ARE IN MILLIMETERS.

H03H (Rev F)
NOTES:
A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0.15) each side.
D. Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0.43) each side.
E. Reference JEDEC MS-012 variation AA.

www.ti.com
NOTES:
A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
⚠️ Lead dimensions are not controlled within this area.
⚠️ Falls within JEDEC TO-226 Variation AA (TO-226 replaces TO-92).
E. Shipping Method:
 Straight lead option available in either bulk pack or tape & reel.
 Formed lead option available in tape & reel or ammo pack.
 Specific products can be offered in limited combinations of shipping mediums and lead options.
 Consult product folder for more information on available options.

TEXAS INSTRUMENTS
www.ti.com
NOTES:
A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Tape and Reel information for the Formed Lead Option package.
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.